Universidade de S3o Paulo

Instituto de Geociéncias

AUTTITUDE: MODELO COMPUTACIONAL ORIENTADO A
OBJETOS PARA DADOS DIRECIONAIS COM ENFASE EM
TECTONICA E GEOLOGIA ESTRUTURAL

MONOGRAFIA DE TRABALHO DE FORMATURA

TF-14/01

Aluno: Arthur Endlein Correia

Orientador: Ginaldo Ademar da Cruz Campanha

Co-Orientadora: Camila Duelis Viana

Sao Paulo

2014

TF
C824
AE.a



Universidade de S3o Paulo

Instituto de Geociéncias

AUTTITUDE: MODELO COMPUTACIONAL ORIENTADO A
OBJETOS PARA DADOS DIRECIONAIS COM ENFASE EM
TECTONICA E GEOLOGIA ESTRUTURAL

MONOGRAFIA DE TRABALHO DE FORMATURA

TF-14/01

Aluno: Arthur Endlein Correia
Orientador: Ginaldo Ademar da Cruz Campanha

Co-Orientadora: Camila Duelis Viana

Sao Paulo

2014



Universidade de Sao Paulo

Instituto de Geociéncias

DEDALUS - Acervo - IGC

MMM

30900032390

AUTTITUDE: MODELO COMPUTACIONAL ORIENTADO A
OBJETOS PARA DADOS DIRECIONAIS COM ENFASE EM
TECTONICA E GEOLOGIA ESTRUTURAL  ~"3e Ga™,

MONOGRAFIA DE TRABALHO DE FORMATURA ~ §~ ——————— /

TF-14/01 NS Y

At L
Aluno: Arthur Endlein Correia P
Orientador: Ginaldo Ademar da Cruz Camparﬁ
Co-Orientadora; Camila Duelis Viana‘%ﬁ SIS0

Sao Paulo

2014



T .

L ¥
=l . m'i.:d‘._fl,'l Y 52

B SIAMOIGIRIO 20

2

BITES MO0 1030 S




A areadomeu TF é

6.28318530717958647692528676655900576839433879875021164194988918461563
281257241799725606965068423413596429617302656461329418768921910116446
345071881625696223490056820540387704221111928924589790986076392885762
195133186689225695129646757356633054240381829129713384692069722090865
329642678721452049828254744917401321263117634976304184192565850818343
072873578518072002266106109764093304276829390388302321886611454073151
918390618437223476386522358621023709614892475992549913470377150544978
245587636602389825966734672488131328617204278989279044947438140435972
188740554107843435258635350476934963693533881026400113625429052712165
557154268551557921834727435744293688180244990686029309917074210158455
937851784708403991222425804392172806883631962725954954261992103741442
269999999674595609990211946346563219263719004891891069381660528504461
650668937007052386237634202000627567750577317506641676284123435533829
46071965069808575109374623191257277647075751875039155637 1556106434245
361322600385575322239181843284039787619051440213097172655773187230676
365593646060390407060370593799154724519882778249944355056695826303114
971448490830139190165906623372345571177815019676350927492987863851012
080185540334227801969764802571672320712741532020942036388591119239789
353567489889651075954945369420809506929241609336851813898258662735405
797830420950432411393204811607630038702250676486007117528049499294652
782839854520853984559356470956327201868344328243984917263006057236594
911141349967701098917717385399138185442159501860591064233068997440551
192047296133099823976366959550713273961485308505572510363683514934578
195554558760016329412003229049838434643442954470028288394713709632272
2314705104266951483698936877046647814788286669095524833725037967 13897
112419843844436854510050851377534358098920330693360997725446558357217
156876765593595336290820190776757272190136012845025041023478596979216
825697725389120848393057004442132237261348855724407838989009424742757
392191272874383457493552931514792482778173166529199162678095605518019
893152815790253893679670519141965164524104497881545343895653696520295
398180528027278887491061013640699250490349879930286285961838131850187
444339292303141971677482119577191954595099786032350785693627653736773
788554831198371185049190791886209994504936169197454728939169730767347
244525219824921610248776878090248827309952556159543138287199540..0uchl

Po6, Urtiga, nao me bate.



RESUMO

Dados direcionais (aqueles que podem ser representados na forma de vetores
unitarios), possuem grande aplicagdo em Geologia, seja na geologia estrutural,
representando a orientacdo de estruturas planares e lineares ou na sedimentologia,
analisando diregées de paleocorrentes. Tradicionalmente sua representacao € feita na
forma de projegdes estereograficas, porém sua tradugdo na forma de vetores permite
maior facilidade de operacgao. O trabalho teve por objetivo a produgio de uma biblioteca
de analise de dados direcionais orientada a objetos com énfase em tratamento de dados
de geotectdénica e geologia estrutural, de facil utilizagdo e extensdo, e sua utilizagao
como base matematica para a remodelagem do software OpenStereo. O projeto foi
desenvolvido em sua maioria na linguagem Python série 2.7.x com o auxilio do pacote
numeérico Numpy, com algumas fungdes escritas em Fortran 90 e compiladas
posteriormente. O desenvolvimento se deu com a criagao do sistema de entrada de
dados, seguido do sistema para sua traducao na forma de cossenos diretores.
Posteriormente, deu-se a criagdo do modelo de objeto para dados direcionais genéricos,
que deu origem aos modelos especificos para dados esféricos, circulares, direcionais e
axiais, com seus parametros estatisticos auxiliares calculados automaticamente.
Tambéem foram desenvolvidas em paralelo fungdes auxiliares para tarefas como a
paralelizagao automatica de operagdes simples. Considerando ser uma biblioteca
Python, o Auttitude serve tanto para o desenvolvimento de outras aplicagdes quanto
para o uso em ambiente interativo, como plataforma para a analise de dados direcionais.
Os testes realizados deram resultados positivos. Sua integragao ao OpenStereo permite
que dados complexos sejam visualizados e facilita sua organizagao, ao mesmo tempo

que confere rapidez, robustez e facilidade de manutengao.

Palavras-chave: Dados direcionais, Python, estereograma



ABSTRACT

Directional data (that is, data that may be represented as unitary vectors) have many
different uses in the geological sciences, either on structural geology, representing the
attitudes of planar or linear structures or in sedimentology, used for paleocurrent
direction analysis. They are usually represented graphically, but translating them into
vectors have many advantages. This work aims to create a object oriented directional
data analysis library, with emphasis on geotectonics and structural geology related data,
ease of use, and as a mathematical engine for OpenStereo, a directional data analysis
software. This project was mainly developed using the Numpy package for numerical
processing, with a few methods written in Fortran 90 and compiled with Python support.
Initially the data input system was created, together with the data translation into direction
cosines module. Afterwards, the generic object oriented module for directional data was
developed, which gave birth to the specific models for spherical, circular, directional and
axial data, with their respective statistical parameters automatically calculated. Auxiliary
methods for automatic parallelizing of simple task were also developed. Considering that
it is a Python library, it may either be used for creating new directional data analysis
software but also in a interactive shell as an analysis system. Test results were positive.
Its integration to OpenStereo allows complex data sets to be easily visualized, at the

same time giving it speed, stability and ease of maintenance.

Keywords: Directional Data, Python, stereonet
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1. INTRODUGAO

Dados direcionais sdo aqueles que podem ser representados como vetores unitarios,
tipicamente em duas ou trés dimensdes, podendo representar pontos na superficie de
uma esfera (3D) ou numa circunferéncia (2D), a orientagao de linhas ou rotagdes. Sao
as vezes também referidos como dados de orientagdo, angulares ou esféricos. Podem
ser vetoriais, se possuirem direcao e sentido, ou axiais, caso possuam apenas dire¢ao.
(Fisher, Lewis e Embleton 1987, Jupp e Mardia 1989).

Existem diversos exemplos de seu uso dentro da geologia, seja na cristalografia,
representando a orientagdo relativa das faces de um cristal; na geologia estrutural,
representando a orientagdo de estruturas planares e lineares; em paleomagnetismo,
como polos de magnetizagdo remanescente; na sedimentologia, analisando diregdes de
paleocorrentes; e na geotectonica, tanto no estudo da cinematica de placas tecténicas,

representando tragcos de hotspot, como no de falhas transformantes.

Sua representagdao em Geologia € tradicionalmente feita com uso de projegdes
estereograficas (Schmidt-Lambert e Wullf principalmente, e mais raramente Ortografica
e Gnomonica) para dados tridimensionais, ou com diagramas em roseta para dados
bidimensionais. No entanto, distribuicdes e métodos estatisticos numeéricos sao
conhecidos ha bastante tempo e estao disponiveis em quase todos os software voltado
ao tratamento de dados estruturais de orientagao. A representagcao destes dados na
forma de vetores, permite uma maior clareza e facilidade de operagao, facilitando a

manipulagao dos mesmos por meios de programagao.

A disponibilidade de linguagens de programacao de alto nivel orientadas a objeto, como
Python - que possui uma extensa biblioteca padrao de fungdes, além do constante
desenvolvimento de bibliotecas de fungbes especializadas (moédulos), que permitem
expandir as capacidades base da linguagem -, o tornam uma ferramenta poderosa para
tratamento de dados direcionais. Sendo assim, sua aplicagdo na analise de dados

geologicos € muito vantajosa, tornando o processamento mais rapido e completo.
2. OBJETIVOS

O objetivo fundamental deste trabalho foi a produgao de uma biblioteca de analise de
dados direcionais orientada a objetos com énfase em tratamento de dados de
geotectdnica e geologia estrutural, de facil utilizacdo e extensao. Construindo-se esta,
objetivou-se entdo a remodelagem do software OpenStereo, utilizando-a como base

matematica para este.



3. FUNDAMENTAGAO TEORICA

O trabalho estatistico com dados direcionais no ambito da geologia pode ser tragado
desde Schmidt (1917), o qual utilizou-os para a analise de estruturas em ardosias,
desenvolvendo tanto o uso do diagrama em roseta quanto a distribuigdo normal envolta
no circulo. A maior parte do avango em tratamento de dados circulares nesta época
ocorreu na area da geologia, com a excega@o notavel de Von Mises em 1918, que o
aplicou na modelagem de erro na determinagé@o de pesos atdomicos, desenvolvendo a
distribuicdo estatistica que leva seu nome, e que até hoje &€ a mais usada neste tipo de
dado (Fisher 1993). J& a analise estatistica para dados direcionais tridimensionais
iniciou-se com Fisher (1953), ao definir uma distribui¢ao para concentragdes de vetores
proximos a um vetor médio equivalente a distribuigdo normal, desenvolvida para tratar
dados de paleomagnetismo. Consagrada como distribuicdo de Fisher, dela surgiram
varias outras, como a de Watson (Bingham 1964, Watson 1965), para concentracao de
dados axiais em torno de uma moda ou em circulos maximos, Bingham-Mardia (Mardia
e Gadsden 1977, Bingham e Mardia 1978), para concentragbes em guirlanda de circulo
menor e Bingham para dados axiais (Bingham 1964, 1974) ou Kent para dados vetoriais
(Kent 1982), que sa@o capazes de descrever varios padrdes diferentes, variando entre
axiais, guirlanda de circulo maximo e uniformes, com parametros obtidos a partir dos

autovalores e autovetores de um tensor de orientagdo calculado a partir dos dados
direcionais.

Além destas distribuicdes estatisticas mais formais e seus parametros associados,
varios outros métodos numeéricos ad-hoc foram criados, muitos deles bastante uteis para
a andlise de dados geolégicos. Temos como exemplo o trabalho de Kamb (1959), que
definiu critérios para deteccdo de desvio da uniformidade em malhas de contagem,
posteriormente revisitado e ampliado por Robin e Jowett (1986). Aléem deste, Woodcock
(1977) e posteriormente Vollmer (1990) desenvolveram métodos para classificagéo da
forma geral dos dados a partir dos autovalores e autovetores de sua matriz de disperséo,
servindo como base inicial nao paramétrica para tratamento dos dados. Dados
circulares sao geralmente representados na forma de rosacea, porém alguns trabalhos
(e.g., Fisher 1993, Munro 2012) propéem uma curva continua baseada em médias

moveis, semelhante ao que é feito ha mais tempo com as malhas de contagem de dados
esféricos.



3.1. Analise de dados direcionais

3.1.1. Notagéo de atitudes medidas em campo

Ha uma grande diversidade de métodos para a representagéo de atitudes em geologia
medidas com a bussola, especialmente para dados planares. Isto se mostra um
obstaculo adicional ao tratamento deste tipo de dado numericamente, pois em geral é
necessaria a sua conversao manual. Portanto, torna-se vantajoso um método robusto e

rapido para a detecgao e conversdo automatica de atitudes em diferentes sintaxes.

Basicamente, usa-se ou o rumo do mergulho da camada ou a diregdo da camada para
representar sua orientagao horizontal, e o mergulho para representar sua inclinagao
vertical. Entretanto, o angulo da diregao ou rumo do mergulho pode ser apresentado na
forma de azimute, indo de 0 a 360 (ou 0 a 180, ou 270 a 90, no caso de diregdes), ou
como quadrante, indo de NOE a NSOE ou NOW a N90W ou SOE a S90E ou SOW a SS0W,
dependendo do quadrante que ele se encontra, e dependendo também se € utilizado
rumo do mergulho ou diregdo. Especificamente para direcées, pode-se escrevé-las
através da regra da mao direita, onde a diregcdo € sempre o angulo em azimute ou
quadrante que esta noventa graus a esquerda do rumo do mergulho, ou adicionando-
se o quadrante do rumo do mergulho a uma diregao medida entre 0 e 180 ou 270 e 90,
em azimute ou N9OW e NOOE. Algumas vezes ainda utilizam-se medidas em outros
quadrantes que nao estes esperados, como medidas de dire¢gdo contadas a partir do
sul, seja por inexperiéncia ou gosto particular do gedlogo que coletou os dados, ou

anota-se medidas aproximadas como NS ou EW, ou apenas N, S, E ou W.

Nao é possivel em absoluto determinar se uma medida em particular foi feita em rumo
do mergulho ou em dire¢ao, porém a partir desta informacgao basica o restante pode ser
convertido sem grandes dificuldades por software. A seguinte expressao regular € a

base desta analise:
(INSEWJ{0,2})(\d*)([INSEWKO,2}) [*"NSEWO-9]*(\d+)([NSEWJ0,2})

Expressdes regulares (Kleene 1956, Pilgrim 2009) sao um meétodo para se validar e
analisar textos de forma robusta e rapida, permitindo que se defina quais variagdes sao
aceitaveis e ainda extraindo pedacos especificos do texto analisado. No caso acima,
cada paréntese indica um dos pedagos analisados, sendo eles, na ordem,
(INSEWKO,2}), a primeira letra do azimute, que deve ser uma dentre N, S, E e W, NE,
NW, SE, SW ou vazio; (\d*), o azimute em si, que deve ser um numero ou vazio;

(INSEWKO,2}), a segunda letra do azimute, que deve ser também umaentre N, S, E e



W, NE, NW, SE, SW ou vazio; ["NSEW0-9])*, um separador, que pode ser qualquer
caractere que nao um numero ou as letras N, S, E ou W ou pode ser vazio; (\d+), o
mergulho, que deve ser um numero; e ([NSEWJ{0,2}), o quadrante do mergulho, que
deve ser um entre N, S, E, W, NE, NW, SE, SW ou vazio. A partir da presenga (algum
valor) ou auséncia (vazio) de cada uma dessas partes (excetuando o separador e o

valor do mergulho) segue-se entao para a seguinte tabela verdade, com casos omissos
sendo considerados erros:

Tabela 1 - Tabela verdade da expressao regular para determinagao do tipo de notagao de
atitude geolégica.

Exemplo  [NSEW]{0,2} \d* [NSEWJ0,2} [NSEW}0,2} Tipo
N30E/SONW S S S S Diregdo, mergulho, quadrante
140/50 N S N N Regra da mao direita
140/50NE N S N N Diregéo, mergulho, quadrante
NW/50 S N N N Regra da mao direita
NS/50E S N S S Diregdo  aproximada, mergulho,
quadrante

Obs.: S indica presenga de caractere e N indica auséncia de caractere.

A partir desta informagao e do fato de tratarem-se de rumo de mergulho ou dirego,
torna-se possivel converter estas atitudes para um unico formato, que € entao utilizado
durante o resto da analise, transparente para o usuario. Neste caso, € utilizado rumo do
mergulho / mergulho.

3.1.2. Vetores e algebra

Apesar de grande parte das operagdes entre dados direcionais poder ser feita por outros
métodos nado vetoriais (sejam eles métodos graficos, como projegdes, ou numericos,
através de trigonometria plana ou esférica), € dificil que estes superem os vetoriais em
termos de clareza de sintaxe e consequentemente facilidade de programacgao. Vetores
s&0 conjuntos de nimeros, um para cada dimensao representada, ordenados como uma
unica linha ou coluna. Sdo um caso especial de matrizes, que possuem m linhas por n
colunas (Fergusson 1994).

Para representar dados direcionais como vetores torna-se necessaria a conversao das

atitudes (ou coordenadas, ou angulos em geral) de entrada em cossenos diretores, que



recebem este nome por serem numericamente o cosseno do angulo entre a atitude em

questao e os eixos x, y e z (tipicamente, Norte, Leste e Cima, para atitudes em geologia).

Para que se entenda a conversdo de, tomando como exemplo mais simples, uma
lineagao, divide-se primeiramente o vetor resultante da atitude em seus componentes
vertical e horizontal (Kim 2005). Sendo o caimento (plunge) o angulo entre a linha e o
plano horizontal, seu componente vertical sera o seno deste angulo, restando como
componente horizontal o seu cosseno. Sendo o rumo do caimento (frend) o angulo entre
o eixo Norte (X) e o componente horizontal do vetor, este se dividira entre o cosseno do
angulo do rumo de caimento para o eixo X e o seno do angulo de caimento para o eixo

Y (Figura 1). Em suma, a seguinte formula é valida:

cos(trend) cos(plunge)
u = |sen(trend)sen(plunge)
sen{plunge)

coy Y

Figura 1 - Relagao entre os cossenos diretores e rumo do caimento e caimento para uma
linha 9. Retirado de Allmendinger, Cardozo e Fisher 2012.

Férmulas equivalentes para atitudes de planos sao facilmente construidas de forma
similar, sendo necessario apenas lembrar que utiliza-se o vetor normal do plano como

representacao vetorial deste.

A conversao de volta em atitudes a partir de cossenos diretores se da também de forma
simples, bastando se calcular o arcosseno (ou arcocoseno, no caso de planos) do

componente vertical e o arcotangente da razao entre os componentesy e x (ou x e vy,

5



no caso de planos), restando ainda comparar os sinais destes para se determinar o
quadrante do rumo do caimento.

A partir destes vetores, algumas operagdes Uteis se tornam possiveis. Primeiramente,
vetores podem ser somados, adicionando-se cada coordenada correspondente e
obtendo-se um terceiro vetor (Figura 2). Pode-se também subtrair um vetor de outro, de
forma semelhante, resultando no vetor diferenca entre os dois (Figura 3).

a+b

Figura 2 - Soma de dois vetores. Retirado de
http:/len.wikipedia.org/wiki/Euclidean_vector#mediaviewer/File:Vector_addition.svg

Figura 3 - Diferenca entre dois vetores. Retirado de
http://fen.wikipedia.org/wiki/Euclidean_vector#mediaviewer/File:Vector_subtraction.svg

A terceira operagao importante € o produto escalar, que € definido como a soma dos

produtos das coordenadas correspondentes entre os dois vetores, ou seja:
U-V= U Ve + ULV + UV

E possivel entdo obter-se a magnitude de um vetor u através do produto escalar dele
consigo mesmo, que pode ser representada por |u|. Além disso, o produto escalar de
dois vetores quaisquer € igual ao produto entre suas magnitudes e o cosseno do angulo

(teta) entre os dois vetores:
u - v = fullvlcosé

Dividindo-se entdo o valor do produto escalar entre dois vetores pelas magnitudes dos
mesmos, € possivel obter-se o angulo entre eles. No caso de vetores unitarios, o calculo

6



é direto. Para o caso geral de matrizes, € necessario que o numero de colunas da
primeira matriz seja igual ao numero de linhas da segunda matriz, e o produto escalar
da-se pela soma do produto dos numeros respectivos das linhas da primeira matriz

pelas colunas da segunda matriz, ou seja,

(A-B); = Z Qi * by,

A ultima operagao fundamental entre dois vetores € o produto vetorial, cujo resultado é
um terceiro vetor perpendicular aos dois originais e com magnitude igual ao produto
entre o seno do angulo entre os dois vetores e as magnitudes dos dois vetores.

Numericamente pode ser obtido através da seguinte formula:

W, Uy Ve — Uy
UXV=W= L',] = [u:vx i uxv:]
- U Uy — Uy Uy
O produto vetorial pode ter atribuido ao menos dois significados importantes para
andlise de dados geolégicos, dependendo do contexto. Primeiro, considerando-se o
produto de duas lineagdes, tem-se o vetor normal ao plano que as contém. Caso os

vetores a serem multiplicados sejam normais a planos (ou seja, polos de planos), o vetor

resultante do produto € a linha de intersecgao entre eles.

A ultima operacao genérica importante € a extracao de autovalores e autovetores. Um
autovetor de uma matriz € aquele vetor que quando multiplicado por ela mantém a sua
dire¢ao, sem sofrer qualquer rotagdo, porém podendo ter seu comprimento modificado.
Autovalor sera entdo, por esta definigao, o fator multiplicativo que sera aplicado por esta
matriz a este autovetor. De forma menos abstrata, pode-se montar uma matriz de
dispersao para um conjunto de dados (como por exemplo, a matriz de covariancia
relacionando as coordenadas de seus vetores), e os autovalores e autovetores desta
matriz representarao respectivamente os eixos de melhor ajuste para o elipsoide que
descreve os dados (Figura 4), e os autovalores os comprimentos relativos destes eixos
(Pearson 1901).
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Figura 4 - Autovetores associados a um conjunto de pontos, como eixos do elipsoide de
melhor ajuste.

A relag@o entre o comprimento destes eixos leva a trés formas extremas possiveis
para dados tridimensionais: linear, planar e esférica:
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o
\//

Figura § - Formas extremas mostrando a relagdo entre os trés autovalores.

A classificagcao destas formas pode ser feita de forma numérica aproximada, por
métodos explicados abaixo.



3.1.3. Estatisticas descritivas

A partir destes blocos basicos, Fisher (1986) define para dados direcionais esféricos
algumas estatisticas descritivas. Sendo x; = {x;, y;, z;} cada ponto de dado, inicialmente

definimos o vetor resultante e sua magnitude:

Sl

r o
T=in, X=-, R =|r|, R =
n

Este vetor nos fornece uma ideia basica da dire¢ao geral dos pontos. De forma parecida,
o comprimento médio, R, sera mais proximo de 1 quanto mais concentrados forem os
pontos em torno desta diregdo média. Entretanto, no caso de dados direcionais, dois
grupos concentrados opostos na esfera, com numero parecido de pontos, terdo como
comprimento médio algo préoximo a zero. Para dados axiais, se ndo for tomado cuidado,
o mesmo problema pode ocorrer, por limitagdes da representagdo deste tipo de dado
como vetores unitarios.

Uma corregao razoavelmente simples, e disponivel como parte das analises estatisticas
realizadas pelo programa desenvolvido, € comparar os pontos de dado com o primeiro
autovetor de sua matriz de dispers@o, que estara préximo também a esta direcao média
porém nao sera afetado por este fendbmeno, visto que os pontos x e -x ndo sao
diferenciados no seu calculo. A partir disto, € possivel concentra-los em um mesmo
hemisfério relativo a este autovetor, evitando alguns problemas com o calculo destes

parametros e outros tratamentos.

Especificamente para dados circulares definem-se também a varancia circular V e o

desvio padrao circular v (Fisher 1993):

V=1-R, v=,2log(1-V)

3.1.4. Eigenanalysis e parametros de forma

Estes parametros basicos de dispersao em torno da média sao entdo complementados
pelos parametros de forma, extraidos da matriz de dispersao T (também chamada de

matriz de orientag&o), definida da seguinte forma:

Os autovetores (u;) e autovalores (t;) desta matriz representam, como explicado acima,

os eixos e comprimentos dos eixos do elipsoide de melhor ajuste para os dados.



Considerando os autovalores em ordem decrescente, e seus respectivos autovetores,

podemos analisar descritivamente a forma da distribuigdo de dados, considerando a
seguinte tabela:

Tabela 2 - Interpretaqéohdescritiva das formas de distribuicdo esféricas em termos dos
autovalores t,,{;,t;de T e o comprimento resultante R. Traduzido de Mardia (2000).

Magnitudes relativas dos

i\ovalores Tipo de distribuigao Outras caracteristicas
f, =t =ty Uniforme
t, grande; ¢, t; pequenos
(i) &, # &3 Unimodal se R =1 Concentrado em uma extremidade de E,

bimodal caso contrario ; ¥
Concentrado nas extremidades de ¢,

“ t, = Eg Unlmodal se R = 1' slmetﬂa rotacional er |t0rno de t]
2
bipolar caso Ccor ltrério

t; pequeno; t,, t, grandes
()& = t; Guirlanda Concentrado em circulo maior no plano &, &,

()t = t; Guirlanda simétrica Simetria rotacional em torno de &5

Entretanto, resta-nos definir o que sao autovalores grandes e pequenos. WWoodcock
(1977) e posteriormente Vollmer (1990) definiram razdes que facilitam esta inferéncia.
Para Woodcock, estabelecendo-se as razdes

_‘l Al
x= n(,12
A2
= l"(j;)

pode-se analisar pelo seguinte grafico a forma da distribuicdo dos pontos:
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Figura 6 - Diagrama de Flinn adaptado (Woodcock 1976). Extraido de Fisher (1986).

Entretanto, este gréafico ainda abre espago para ambiguidades, e nao € de interpretagao

muito simples. Vollmer (1990), por outro lado, propde as seguintes equagoes:

(4 — 42) G 2Wa=d) L 3()

Eemom N N

C= In(ﬁ

A3
referentes, respectivamente, a proximidade do conjunto de dados a distribuigao pontual
(P, em que os autovalores seriam no extremo 1, 0 e 0), em guirlanda (G, com
autovalores 0,5, 0,5 e 0) ou aleatdria (R, com autovalores 1/3, 1/3 e 1/3). Além disso,
define também um parametro de cilindricidade (C), baseado no logaritmo da razao entre
o primeiro e o terceiro autovetores. O diagrama triangular resultante é de entendimento
muito mais simples (Figura 7)
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Figura 7 - Diagrama triangular para classificagao de forma. Adaptado de Vollmer (1990).

3.1.5. Malhas de contagem

Malhas de contagem s@o malhas regulares de pontos aproximadamente equiespagados
na esfera ou circulo, onde para cada n6 desta ou se conta a quantidade de pontos que
estdo a uma distancia angular menor que um valor escolhido ou se calcula um valor total
que depende da distancia até cada ponto de dado. De uma forma ou outra, ela
representa uma estimativa da fungao de densidade de probabilidade para os dados
(Figura 8).
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Figura 8 - Estimativa nao paramétrica da densidade dos dados usando o método de Fisher.
Cada ponto é espalhado em sua vizinhanca, e a estimativa é a soma destas contribuigdes.
Extraido de Fisher (1993).

Existem diversos métodos diferentes de se produzir uma malha regular para se fazer o
calculo desta estimativa (Diggle e Fisher 1985, Kamb 1956), entretanto a forma mais
flexivel é a sugerida por Robin e Jowett (1986), na qual a partir do espagamento angular
meédio esperado t, se distribuem circulos de latitude espagados por este valor, e dentro
de cada um destes circulos se calcula qual distancia longitudinal a equivale a esta
distancia t de circulo maximo, em um circulo separado por angulo v do eixo vertical,

segundo a relagao:

i 2(sen(%)

sen(v)
A partir dos cossenos diretores dos nés destas malhas calcula-se entao o angulo até
cada ponto de dado, a partir de adapta¢ao do produto escalar:

8 = acos(——)

v u
[v]|u|

Entdo, ou contando-se o numero de pontos com angulo até um limite definido ou

aplicando-se a formula:

w = Z ek(cos()—l)

é calculado o valor para cada n6 da malha. A escolha da constante K na formula acima
ou do angulo limite para contagem tem como efeito fundamental suavizar as
concentragdes de dados ao longo da esfera, permitindo se ver grandes tendéncias,

porém apagando detalhes. A escolha deste fator deve ser feita, em casos extremos, de
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forma experimental, porém Robin e Jowett (1986) sugerem férmulas para estimar

valores 6timos de suavizagao, e & baseado nestas férmulas que a biblioteca calcula
estes valores inicialmente, caso o usuario nao os escolha.

Para dados circulares a operagao € mais simples, bastando apenas se dividir o circulo

pelo espagamento angular adequado para se obter os nés, e para cada né de contagem
aplicar a férmula

0 9375 Z
nx*h €S
sendo h o fator de suavizagdo. A partir destes noés pode ser entdo produzida uma

rosacea continua, que apresenta-se como uma ferramenta bastante interessante de
visualizagao de dados circulares (Fisher 1993, Munro 2012).

3.1.6. Rotagdes e Mudanca de Eixos

Muitas vezes €& conveniente ou necessario a rotagdo ou mudanca dos eixos de
coordenadas dos dados. No segundo caso, define-se 0 novo sistema de coordenadas
a partir de trés eixos ortogonais, x', ¥’ e z’, que devem ser unitarios a nao ser que se
deseje deformar a distribuicdo espacial dos dados (que neste caso deixarao de
pertencer a superficie de uma esfera unitaria). Para se projetar dados neste sistema
basta realizar o sequinte produto

' Xl XU XU

! ! !
u' = }” U= | YelUy T YylUy + YU,
4 Zyuehizyuy ot Za U,

Como um exemplo, a proje¢do de um conjunto de dados utilizando seus autovetores

como novos eixos pode ser util para a verificagao de simetria.

A rotagdo, por outro lado, € feita a partir de um eixo unitario (v) e do angulo de rotagio
anti-horaria em torno dele (8), a partir da equagdo matricial

cos6 + vZ(1 — cosb) v, Uy (1 — cosf) — v,senf v v,(1 — cosb) + v,send
u' = R-u=|vv,(1—cosd) — v,senb cos6 + v} (1 — cosh) vv,(1 — cos8) — v,senb|-u
v, v;(1 — cos6) + vysenf v,v,(1 — cosb) — v,senb cosé + vZ(1 — cos@)

Rotagdes serdo em geral utilizadas para a restituicdo, como por exemplo se tentando
reestabelecer o rumo de transporte sedimentar de uma estratificagdo cruzada que foi
basculada tectonicamente.
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3.1.7. Projegdes

A forma mais tipica de representagao de dados direcionais na geologia € definitivamente
a projecgao (Fisher 1987), seja ela de igual angulo (ou estereografica) ou de igual area
(ou Schmidt-Lambert) (Figura 9).

Zzénite

<

Projegao de igual angulo Projecao de igual area

B

Figura 9 - Demonstracao das projecoes de igual angulo e igual area, mostrando a relagao
entre pontos na esfera e projetados no plano. Adaptado de Fisher (1986).

A primeira tem seu uso principal na cristalografia, onde € necessaria a correta
representacao dos angulos entre as faces, sem distor¢cdes. Entretanto, para a
visualizacao da distribuicdo de atitudes apenas a segunda presta-se de forma
adequada. Enquanto a primeira preservara as formas, visto que circulos na esfera
permanecerao como circulos no plano na projecao de igual angulo, uma malha regular
de pontos ao redor da esfera ficara excessivamente distorcida sem que se use uma

projecao de igual area, como nesta figura:
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Figura 10 - Diferencas entre as projegées de igual angulo e igual area, para uma mesma
malha regular com espagamento de 2,5 graus, inclinada 60 graus para norte. Observa-se
que os circulos de latitude onde distribuem-se os nés na malha regular mantém-se como
circulos no primeiro caso, entretanto a sua distribuicdo regular s6 é respeitada na
segunda projegao.

Considerando-se o ponto v = {x, y, z} pertencente a esfera, suas coordenadas X,Y no

plano na projecao de igual angulo sao dadas pelas formulas

4. MATERIAIS E METODOS

O projeto foi desenvolvido na linguagem Python série 2.7.x (Python Software Foundation
2010), tomando os cuidados necessarios para que eventualmente seja convertido para
a série 3.x. O desenvolvimento foi feito nessa série porque ainda parte consideravel das
bibliotecas numeéricas e cientificas nao foi adaptada para a série 3.x. Entretanto é
desejado que quando possivel este trabalho seja convertido, pois esta nova série

promete maior robustez e codigo em geral mais limpo.

Além da biblioteca padrao embutida na linguagem Python foi utilizado também o Numpy

(Oliphant 2007), pacote numérico que simplifica enormemente o trabalho de
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implementagdo com métodos rapidos e eficientes para boa parte das operagdes com

vetores e matrizes.

Algumas partes da biblioteca foram escritas em Fortran 90, quando nao for possivel ou
adequado fazé-las diretamente no Python com o auxilio do Numpy. Para isto, foi
utilizado o compilador gfotran e o script f2py (Peterson 2009) para sua compilagdo com
suporte integrado ao Python.

Considerando a integragao com o OpenStereo, foram utilizadas também as bibliotecas

wxPython, de interface grafica, e yapsy, um framework de plug-ins.
O desenvolvimento da hiblioteca foi feito na seguinte ordem:

1. Sistema de entrada de dados, onde foram buscadas as bibliotecas auxiliares
capazes de abrir arquivos, como csv ou xIsx, ou foram escritas rotinas proprias
para tal.

2. Sistema de tradugcdo de dados, que permite que dados de diferentes tipos
possam ser automaticamente traduzidos para uma unica notagdo, gerando
entao cossenos diretores a partir destes.

3. Modelo de objeto para dados direcionais genericos, que armazena os dados
importados e traduzidos anteriormente, de forma genérica

4. A partir do modelo genérico, os modelos especificos para dados esféricos,
circulares, direcionais e axiais, com seus parametros estatisticos auxiliares

calculados automaticamente.

Em paralelo, fungdes auxiliares foram desenvolvidas para outras tarefas, como a
paralelizagao automatica de operagdes simples.

5. RESULTADOS OBTIDOS

Considerando ser uma biblioteca Python, o Auttitude serve tanto para o
desenvolvimento de outras aplicagdes quanto para o uso em ambiente interativo, como
plataforma para a analise de dados direcionais. Foram desenvolvidas 4 classes (Tabela
3) e 28 fungdes (Tabela 4) para o tratamento dos dados, além de se utilizar diversas
bibliotecas externas. O cddigo fonte dos pacotes desenvolvidos encontra-se
reproduzido nos anexos de 1 a 6. Os arquivos de dados utilizados para testes
encontram-se nos anexos 7 a 10.
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Tabela 3 - Relagéo de classes desenvolvidas.

Classe

DirectionalData

Descrigao

~ Classe base para andlise de dados direcionais

SphericalGrig Classe base para contagem de dados na esfera
PartProcessor Parte do sistema de paralelizagdo automatica
Attitude Sistema de tradug&o automatica de notagdes de atitudes

Tabela 4 - Relagdo de fungdes desenvolvidas.

Funcéo Descrigao

dcos Converte polos em cossenos diretores

dcos_lines Converte linhas em cossenos diretores

sphere Converte cossenos diretores em polos

sphere_line Converte cossenos diretores em linhas

invert Converte polos em planos ou vice versa

RHR Converte rumo do mergulho em regra da méo direita
equal_angle Projeta os dados em projegdo de igual angulo
equal_area Projeta os dados em projegao de igual area
concatenate Concatena dois DirectionalData

intersect Calcula todas as intersegdes entre dois DirectionalData
regular_gnd Produz uma malha regular em torno da semi esfera

sphere_regular_grid
universal_loader
universal_translator
\oad

calculate_axes

rotation_matrix

Produz uma malha regular em torno da esfera

Carrega automaticamente diferentes formatos de arquivo

Converte automaticamente dados em rumo do mergulho / mergulho
Produz automaticamente DirectionalData a partir de um arquivo

Calcula os autovetores e autovalores de um conjunto qualquer de dados

Produz uma matriz de rotagao

rotate Rotacional os dados
project Projeta os dados em um novo sistema de coordenadas
parallel Converte uma fung@o para processamento paralelo

parallel_counter

Modifica uma funcdo geradora de contadores para processamento

paralelo
FisherCounterAxial Gera contadores axiais segundo o método de Fisher
FisherCounter Gera contadores segundo o método de Fisher
RobinGirdleCounter Gera contadores para guirlandas segundo o método de Robin

A parte principal da biblioteca € a classe DirectionalData. Ela serve como contéiner para
dados direcionais, ao mesmo tempo que oferece uma série de parametros estatisticos
calculados automaticamente, tanto para dados circulares quanto esféricos. Ela pode ser
utilizada fornecendo-se cossenos diretores como dados e quaisquer outros parametros

adicionais disponiveis, que quando necessario serao utilizados em seus sub-moédulos.
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O primeiro passo para se produzir um objeto da classe DirectionalData é carregar os
dados de entrada. Para isto, pode se utilizar a sequéncia de fungdes universal_loader,
universal_translator e por fim passar os dados obtidos para a classe DirectionalData, ou
utilizar-se da fungdo /oad. O universal_loader € responsavel pelo carregamento
automatico dos dados, lidando com diferentes formatos de arquivo. Nesta verséo, ele é
capaz de lidar com dados do tipo CSV, Numpy e Excel. A partir disto, o
universal_translator traduz os dados da notagao que estiverem para rumo do mergulho
/ mergulho, como explicado na se¢ao de NotagZo de atitudes. O arquivo no exemplo
abaixo, frat.dat, que encontra-se disponivel no Anexo 10, exemplifica a variedade de
notagdes encontradas. Esta sequéncia de métodos permite maior flexibilidade no
carregamento dos dados, utilizando-se, por exemplo, de outras fungdes externas dentre
os passos. A funcao /oad segue esta sequéncia basica automaticamente, convertendo
entdo os dados em cossenos diretores e carregando-os em um objeto da classe
DirectionalData, que é por ela retornado. Funciona de forma transparente ao usuario,

utilizando valores padrao ou tentando extrai-los dos dados. Por exemplo,

>>>arquivo_de_entrada = universal_loader(“frat.dat”)
>>>dados_de_entrada = universal_translator(arquivo_de_entrada,
dip_direction=False)

>>>frat = DirectionalData(dcos(dados_de_entrada))

>>>p = auttitude.load(“b.csv”)

>>>dados = load(“tocher.txt")

A partir de um DirectionalData, uma série de parametros estatisticos encontram-se

disponiveis,

>>>dados.fisher_k
2.0994328692611806
>>>dados.eigenvalue[0]
109.57337905751763
>>>dados.vollmer_C
0.79271596847405035
>>>print dados
tocher.txt

n =200

Expected Distribution:
Girdle

Eigenvectors:
1:204.5/1.0
2:295.4/422
3:113.4/47.8

Shape parameter
K=0.21

Strength parameter
C=207

Normalized Eigenvalues:
S1: 0.548
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S2: 0.383

S3: 0.069

Fabric (triangular diag.):

Point = 0.165

Girdle = 0.628

Random = 0.207

>>>spherical(dados.mode)

(16.6, 3.8)

dentre diversos outros. Veja que o ultimo parametro chamado moda, que equivale ao
no6 de contagem com maior valor, depende de uma malha de contagem. Por padréo, &
criada uma malha de contagem axial, com K calculado a partir da quantidade de dados
e espagamento médio entre os nos de 2,5 graus. Como a analise da malha pode ser
demorada, a malha de contagem nao é criada pelo DirectionalData até que ela seja

necessaria, armazenando entdo o resultado obtido.

A malha de contagem € genericamente um objeto da classe SphernicalGnd, que constroi
internamente a malha regular e possui métodos para contagem pelo método de Fisher
ou por pontos dentro de um angulo limite. Adicionalmente & possivel opera-la com

qualquer fungcao cujos parametros sejam uma malha onde ela sera calculada e dados
para se fazer o calculo.

Fungdes adicionais que paralelizam automaticamente a contagem, ou a fazem em um
submoédulo em Fortran, foram também desenvolvidas. Nao sao utilizadas por padrao
porque o gasto de tempo adicional para se preparar o processamento em paralelo ou
se importar as bibliotecas externas, ndo compensa o ganho de tempo na quantidade
tipica de dados processados em problemas geologicos. Tornam-se mais interessantes
para malhas de altissima resolugao, como separagdo média de um segundo de arco, ou
quantidade de dados muito grande.

Algumas operagées com os dados também sdo possiveis, como a concatenagao
(concatenate), que combina dois DirectionalData, e o produto, que calcula as
intersecgoes (intersect) entre dois conjuntos de dados (Figura 12), exaustivamente:
>>>a = load(“a.xIsx”)

>>> concatenate(a, b)#OU a+b

<__main__.SphericalDataset at 0xa828080>
>>>resultados = intersect(a, b) # OU a*b

Os DirectionalData resultantes destas operagdes herdam os parametros adicionais do
primeiro DirectionalData.

Por fim, dados podem ser projetados em um outro sistema de coordenadas (project), ou
rotacionados (rotate) por um eixo e angulo definidos pelo usuario (Figura 13). Os
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DirectionalData resultantes também herdam dos dados originais os parametros
adicionais.

>>>auttitude.project(dados, (x_linha, y_linha, z_linha))

<__main__.SphericalDataset at 0xa828668>

>>>dados = load(“tocher.txt")

>>>dados_rotacionado = rotate(dados, eixo, angulo)

Considerando seu uso em ambiente interativo, foram incluidos na classe
DirectionalData métodos auxiliares para o uso da biblioteca mplstereonet, permitindo
sua visualizagao (Figura 11):

>>>import matplotlib.pyplot as plt
>>>import mplstereonet

>>> fig, ax = mplstereonet.subplots()

>>>dados.plot_poles(ax, “bo”)
>>>plt.show()

270°

180°

Figura 11 - Plot dos dados em projegao de igual area utilizando a biblioteca mplstereonet
adaptada. Os dados utilizados sao apresentados no Anexo 10.

>>> fig, ax = mplstereonet.subplots()
>>> a.plot_poles(ax, "bo")

>>> a_planes(ax, "b-")

>>> b.plot_poles(ax, "bo")

>>> b.plot_planes(ax, "b-")

>>> resultados.plot_lines(ax, "r+")
>>>plt.show()
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Figura 12 - Resultados das intersecgées dos dados apresentados nos anexos 7 e 8, com
os dados de entrada e circulos maximos respectivos.

>>>import matplotlib.pyplot as pit
>>>import mpistereonet

>>>fig = plt.figure()

>>>ax = fig.add_subplot(121, projection="stereonet')
>>>tocher.plot_pole(ax, 'ko', markersize=1)

>>>ax = fig.add_subplot(122, projection='stereonet')
>>>tocher_rot.plot_pole(ax, 'ko', markersize=1)
>>>plt.show()

Figura 13 - Exemplo de rotagdo, usando o eixo 204/01 com rotagao de 42,2 graus. Os
dados utilizados encontram-se reproduzidos no Anexo 9.

Pode-se também obter as projecoes de igual angulo e igual area dos dados, através dos
métodos equal_angle e equal_area, respectivamente.
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Por fim, o uso da biblioteca como backend matematico e modelo de armazenamento de
dados para o OpenStereo o tomou mais rapido e estavel, além de facilitar sua

manuten¢ado e extensao, deixando para sua implementagao apenas a interface grafica.
6. CONCLUSOES

Considera-se que o objetivo principal do trabalho foi atingido. A criagao da biblioteca
Auttitude, composta por 28 funcdes e 4 classes, permite que esta seja utilizada para o
tratamento de dados direcionais tanto de forma direta como integrado em outras
aplicagdes. Sua integragao ao software OpenStereo traz vantagens aos dois programas,
ja que o uso do Auttitude em uma interface grafica facilita a visualizagdo de conjuntos
de dados complexos e simplifica a sua organizagdo, ao mesmo tempo que traz ao
OpenStereo velocidade, robustez e facilidade de implementacdo e manutencao. Os

testes realizados tiveram resultados positivos.

O cédigo fonte é disponibilizado em anexo para que futuras adaptagcées e expansdes

possam ser desenvolvidas.
7. REFERENCIAS BIBLIOGRAFICAS

Bingham, C., 1974. An antipodally symmetric distribution on the sphere. Annals of Statistics, 2:
1201-1225

Bingham, C. & Mardia, K.V. 1978. A small circle distribution on the sphere. Biometrika 65: 379-
389

Campanha, G. A. C,, & Quintanilha, J. A.. 1996. Analisc Estatistica dc Dados Estruturais;
Estatistica de Dados Direcionais Tridimensionais, In: Carneiro, Celso Dal Re (editor) Projegdo
estereogrdfica para andlise de estruturas, UNICAMP / CPRM / IPT, Séo Paulo, pp. 51-58

Diggle, P. J., & Fisher, N. I. 1985. Sphere: a contouring program for spherical data. Computers
& Geosciences, 11, 725-766.

Fisher, R. 1953. Dispersion on a sphere. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences 217.1130 295-305.

Fisher, N.I., Lewis, T. & Embleton, B.J.J. 1987. Statistical analysis of spherical data. Cambridge
University Press, 329p.

Fisher, N.1.1995. Statistical analysis of circular data. Cambridge University Press, 277p.
Ferguson, J. 1994. Introduction to linear algebra in geology. Springer. 224p.

Grohmann, C.H., Campanha, G.A.C. and Soares Junior, A.V., 2011. OpenSterco: um programa
Livre e multiplataforma para analise de dados estruturais. In: XIII Simpédsio Nacional de Estudos
Tectonicos, Atas ..., Sociedade Brasileira de Geologia Nucleo Centro-Oeste, Cuiaba.

Kamb, W.B. 1959. Ice petrofabric observations from Blue Glacier, Washington, in relation to
theory and experiment. Journal of Geophysical Research 64: 1891-1909

23



Kent, J.T. 1982. The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society. 44: 71-80.

Kim, J. M. (2005). Vectorial formulation of direction cosines for anisotropic geologic structures
from their geologic angle measurements. Mathematical geology, 37: 929-941.

Kleene, S.C. 1956. Representation of Events in Nerve Nets and Finite Automata. In: Shannon,
Claude E.: McCarthy, John. Automata Studies. Princeton University Press. p.: 3-42.

Munro, M.A. & Blenkinsop T.G. 2012. MARD—A moving average rose diagram application for
the geosciences. Computers & Geosciences 49: 112-120.

Oliphant, T.E. 2007. Python for Scientific Computing. Computing in Science & Engineering 9:
90

Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. 7he London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2: 559-572.

Peterson, P. 2009. F2PY: a tool for connecting Fortran and Python programs. International
Journal of Computational Science and Engineering 4: 296-305.

Pilgrim, M.. & Willison, S. (2009). Dive Into Python. Apress. 315 pp.

Python Sofhware Foundation 2010. Python, version 2.7: programming language soffware. Reston,
Virginia, Zope Corporation.

Robin, P.F., & Jowett E.C. 1986. Computerized density contouring and statistical evaluation of

orientation data using counting circles and continuous weighting functions. 7ectonophysics 121:
207-223.

Schmidt, W. 1917. Statistische Methoden beim Gefiigestudium Kristaliner Schicfer. Kaiserliche
Akademie der Wissenshafien in Wien, Sitzungsberichte,
Mathematisch-Naturwissenschafiliche Klasse. 126: 515-338

Vollmer. F.W. 1990. An application of ecigenvalue methods to structural domain
analvsis. Geological Society of America Bulletin 102: 786-791.

Watson. G.S. 1965. Equatorial distributions on a sphere. Biometrika 52: 193-201.

Woodcock. N.H. 1977. Specification of fabric shapes using an eigenvalue method. Geological
Society of America Bulletin 88: 1231-1236.

24



- ;IL. Jﬂtﬂmir.&l e #‘\Jf
: ';_.a‘.rn--'* Vi *A‘{'.wz*a U-..f- ‘uﬁ:—:‘.;

v ‘ mm‘*a- : . ol Are et oy

e pl R L.J-*n s e f‘..whgasﬁ d.s: M
WA v MR .‘1';. o St A A OATE la%_‘jﬁi-. *p;-!h-r':-

g _ A, .
F_“ " i c P - - ’ i il | .

'i‘ E b e _pr "-‘tr;jf:,-—f‘ _iu.l |-'-‘_“'J\i e L T o _-‘-3 L 54 rwz‘ _{P"r ;“ halb
S, - -. - ¥ b - - g i .'_ [ . -‘ ‘ii’.“ l'r B
rl_ el § . » &

R i R U o e f.v-t\_w.m;w—.ﬁrrw.

'
e B .
X L e e R Ly AR
[ i - g Bz g
e o s T - ' ot I
Qg b o
Vs - L;‘\r’.'
o } TACEETEY
Rt SEl ST % i1 Pl it T '_-,
‘
PR T 3 - A R e S G WL L & S .f#! A
.
L
' 9%
= X T c

{Enduihd %ém; Sah

—u el Rt ey g o d ' 4 - _‘Illh

o ' ' 3 o u‘tqhw_ ks

Bah s s T deehson e Bagsih taded e ekt i i*ﬁf-ﬁ R84 et
- pr o RS et w.—h-"S'a_-
T N PrATeY y gy f.,;_'i rm, R g5

: ! ' BOGge '?"J'f’tr‘f'd r'h‘* Wﬁj*
e e S TR TP LS TRIDTN , ﬁﬂPm
s . : ‘ Lk AN i

: : » $ > ar - 3 LIy ) PR AR S T R ey, = n-‘-‘ ﬁiﬁ.—'—""

by — T T ) _' l_p_l_.n; ,_JI-. vu-.‘- md-_—.—-
v by : : ,
e "—|‘v L
2 = 5 it ; ‘ . A"‘ ih
4 . ) P 3 . y L ey g Tadi= @nled 2R - FAG
5 il ‘ . % ;

4

- ‘ N s : e ‘ _7;;4..,:d_,_«1_\.
proita -- - R I e k

“!'V.L1.”. 2 ’fm
! S Lk ol it ahid - Nk EN

5 1—5.21" a}{.tl';.

sy e L0 -atelR) Hutils fﬂ;

5::;*-}-*!“

f&?&- -r"ih

L : s Bwlia s i TS I*!;.dﬁ"’fﬁ-ﬁ'

.ﬁ-ﬂ-




8. ANEXOS
ANEXO 1 - auttitude.py

import math

import itertools

import os

from csv import Sniffer, reader

sniffer = Sniffer()

import multiprocessing

from multiprocessing import cpu_count, Pipe

import numpy as np
from conversion import Attitude
translator = Attitude()

#set this for experimental multi-core support.
multicore_when_possible = False

#pole_plot_options =
#plane plot_options =
#line_plot_options =

def dcos(data):
“““Converts poles into direction cossines."""
theta, phi = np.radians(data.T)

return np.array((np.sin(phi)*np.sin(theta), np.sin(phi)*np.cos(theta), -
np.cos(phi))).T

def dcos_lines(data):
“"YConverts lines inta direction cosines."™"
return dcos(invert(data))

def sphere(data):

““"“Calculates the attitude of poles direction cossines."""

X, ¥y, z = data.T

sign_z = np.copysign(l, z)

return np.array((np.degrees(np.arctan2(sign_z*x,sign_z*y)) % 360,
np.degrees(np.arccos(np.abs(z))))).T

def sphere_lines(data):
““®Calculate the attitude of lines direction cosines."""
return invert(sphere(data))

def invert(data):

""“Inverts poles into planes and vice versa.”™"
theta, phi = data.T

return np.array(((theta - 1890) % 360, 92 - phi)).T

def RHR(data):

"““Converts data into Right Hand Rule."""
theta, phi = data.T

- return np.array(((theta - 99) % 360, phi)).T

= data.T
x/(1-2), y/(1-2)
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def equal_area(data):
X, V, z =data.T
return x*np.sqrt(2/(1-z)), y*np.sqrt(2/(1-z))

def concatenate(A, B):

"“""Concatenate A and B directional datasets, retaining A's additional
attributes"""

return DirectionalData(np.vstack((A.data, B.data)), *A.args, **A.kwargs)

def intersect(A, B):

“""Calculate all intersections between A and B directional datasets,
retaining A*'s additional attributes"™"

all_intersections = np.array([np.cross(a, b) for a, b in
itertools.product(A.data, B.data)])

intersections =
all_intersections[np.nonzero(np.linalg.norm(all_intersections, axis=1))]

return DirectionalData(intersections, *A.args, **A.kwargs)

def regular_grid(node_spacing):
il
Builds a regular grid over the hemisphere, with the given average node
spacing."""
nodes = [(@., 990.),]
spacing = math.radians(node_spacing)
for phi in np.linspace(node_spacing, 99., 90./node_spacing,
endpoint=False}:
azimuth_spacing =
math.degrees(2*math.asin((math.sin(spacing/2)/math.sin(math.radians(phi)))))
for theta in np.linspace(®., 368., 36@./azimuth_spacing):
nodes .append((theta+phi + node_spacing/2, 96. - phi))
for theta in np.linspace(®., 36@., 360./azimuth_spacing):
nodes.append(((theta + 98. + node_spacing/2) % 368., 98.))
return np.array(nodes)

def sphere_regular_grid(node_spacing):

LR ll\
Builds a regular grid over the sphere, with the given average node
spacing."""

grid = dcos_lines(regular_grid(node_spacing))

return np.vstack((grid, -grid))

def universal_loader(filename, extension=None, worksheet=0):
Ry
Loads many different possible file formats, dispatching them to
the proper specific loader."""
extension = extension or os.path.splitext(filename)[-1] #support for
field names should be added eventually. First row in csv and xLsx, header 1in
geoeas, field names directly 1in databases and GIS files.
if extension in [".csv", ".txt", ".dat"]: #seems ok, for now.
f = open(filename)
try:
#data = f.readlines()
#geoeas_offset = sniff _geoceas(data)
dialect = sniffer.sniff(f.read(1624))
f.seek(@)
except Error:
input_data
else:
input_data = reader(f, dialect=dialect)

L}

np.loadtxt(filename)
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#Have to actually read the data inside here. It currently
returns the reader. Well, or not.
#Maybe return a generator, that would be fun.
#input_data = np.loadtxt(filename)
elif extension in [".npy", ".npz"]:
input_data = np.load(filename)
elif extension in [".x1s", ".xlsx"]:
from xlrd import open_workbook
data = open_workbook(filename).sheets()[worksheet]

input_data =[data.row_values(i) for i in range(data.nrows)]
return input_data

def universal_translator(data, longitude_column=8, colatitude_column=1,\

colatitude=True, dip_direction=False):
""“Tpranslates data from many different notations into dipdirection/dip,
semi-automatically"""

attitude_data = ((line[longitude_column], line[colatitude_column]) for
line in data)
converted_data = np.array(translator.process_data(attitude_data,
dd=dip_direction))
if not colatitude:
converted data[:,1] = 98 - converted_data[:,1]
return converted_data

def load(filename, *args, **kwargs):

LN ll\
Attempts to automatically load the given filename, using whatever extra
information is
made available by the user, returning a DirectionalData object. See
universal_translator

and universal loader signatures for additional information. Important
options:

dip_direction, defaults True:
interpret data as dip direction, or strike if set to False.
line, defaults to False:
interpret data as lines, instead of planes."""
extension = kwargs.get(‘'extension', os.path.splitext(filename)[-1])
worksheet = kwargs.get(’'worksheet', @)
input_data = universal loader(filename, extension=extension,
worksheet=worksheet)
dip_direction = kwargs.get('dip_direction', True)
line = kwargs.get('line', False)
longitude_column = kwargs.get('strike_column', )
colatitude_column = kwargs.get('dip_column', 1)
converted data = universal_translator(input_data,
.~ongitude_column=longitude_column,
colatitude_column=colatitude_column,
colatitude=line,
dgip_direction=dip_direction,)
if not line:
converted data = invert(converted_data)
return DirectionalData(dcos(converted_data),*args, **kwargs)

def calculate_axes(data;:
wewcalculates the eigenvectors and eigenvalues of the dispersion matrix

.on_tensor = np.cov(data.T[:3, :]}
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def

eigenvalues, eigenvectors = np.linalg.eigh(dispersion_tensor, UPLO="'U")
eigenvalues_order = eigenvalues.argsort()[::-1]

eigenvectors = eigenvectors[:,eigenvalues order].T

return eigenvectors, eigenvalues

rotation_matrix(u, theta):
ZFrom openstereo development notes,
#from http://stackoveryflow.com/questions/6882577/python-rotation-of-3d-

vector

#Using the Euler-Rodrigues formuia:
#http://en.wikipedia.org/wiki/Euler¥E2%80%93Rodrigues parameters

Return the rotation matrix associated with counterclockwise rotation

about

the given axis u by theta degrees.

u = np.asarray(u)

theta = math.radians(theta)

u = u/math.sqgrt(np.dot(u, u))

a = math.cos(theta/2)

b, ¢, d = -u*math.sin(theta/2)

aa; . bbsysec; ddi=vaka, ib*b; c¥c; d¥d

be, vad, dc, ab, bd, cd = b*e, a*d, a*c, a*b, bd; c*d

return np.array([[aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)],
[2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)],
[2*¥(bd+ac), 2*(cd-ab), aa+dd-bb-cc]])

def rotate(data, u, theta):

return DirectionalData(np.dot(data.data, rotation_matrix(u, theta)),

*data.args, **data.kwargs)

def project(data, new_axes):

return DirectionalbData(np.dot(data.data, new_axes.T), *data.args,

**data.kwargs)

class DirectionalData(object):

def __init_ (self, data, calculate_statistics=True, *args, **kwargs):
AL H\

Base class for directional data analysis, either 2d or 3d. Store

optionally

additional arguments for plotting.
self.args, self.kwargs = args, kwargs
self.data = data
self.data_sphere = kwargs.get('data_sphere', None)
if self.data_sphere is None:
self.data_sphere = sphere(data/np.linalg.norm(data, axis=1)[:,

np.newaxis])

self.n, self.d = data.shape

if calculate_statistics: self.initialize_statistics()
self. _grid = None

def initialize_statistics(self):
self.resultant_vector = np.sum(self.data, axis=0)
self.mean_resultant_vector = self.resultant_vector/self.n
self.resultant_length = np.linalg.norm(self.resultant_vector)
self.mean_resultant_length = self.resultant_length/self.n
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it self.d ==

self.circular_variance = 1 - self.mean_resultant_length

self.circular_standard_deviation = math.sqrt(-2*math.log(1 -
self.circular_variance))

elif self.d ==
self.resultant_vector_sphere = sphere(self.resultant_vector)
self.fisher_k = (self.n - 1)/(self.n -
np.linalg.norm(self.resultant_vector))
direction_tensor = np.dot(self.data.T, self.data)/self.n
eigenvalues, eigenvectors = np.linalg.eigh(direction_tensor)
eigenvalues_order = (-eigenvalues).argsort()

self.eigenvalues = eigenvalues[eigenvalues_order]
self.eigenvectors = eigenvectors[:,eigenvalues_order].T
self.eigenvectors_sphere = sphere_lines(self.eigenvectors)

#From Vollmer 1996

self.vollmer P = (self.eigenvalues(@] -
self.eigenvalues[1])/eigenvalues.sum()

self.vollmer G = 2*(self.eigenvalues[1] -
self.eigenvalues[2])/eigenvalues.sum()

self.vollmer R = 3*self.eigenvalues[2]/eigenvalues.sum()

self.vollmer classification = ("point", “"girdle", "random")[\
| np.argmax((self.vollmer_P,self.vollmer_G, self.vollmer_R))]

self.vollmer_B
self.vollmer_ C
math.log(self.eigenvalues[@]/self.eigenvalues([2])

self.vollmer_P + self.vollmer_G

uon

#From Woodcock 1977

self.woodcock_Kx =
math.log(self.eigenvalues{1])/self.eigenvalues[2])

self.woodcock Ky =
math.log(self.eigenvalues[0]/self.eigenvalues[1])

self.woodcock C =
math.log(self.eigenvalues[8]/self.eigenvalues[2])

self.woodcock K = self.woodcock Ky / self.woodcock_Kx
def _ add_(self, other):

""““Concatenate A and B directional datasets, retaining A's additional
attributes™""
return concatenate(self, other)
def _ mul__ (self, other):
“““Calculate all intersections between A and B directional datasets,
retaining A's additional attributes"""
return intersect(self, other)
@property
def grid(self):
if self._grid is None:
self. grid = SphericalGrid(**self.kwargs)
return self. _grid
@property
def grid_nodes(self):
return self.grid.grid
s def grid_fisher(self, k=None;:
U Ry return self.grid.count_fisher(self, k)
ﬂaf.grid kamb(self, theta=None}:
b neturn self.grid.count_kamb(self, theta)
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def _ repr_ (self):
return "%s(%s, *%s, **%s)" % (self.__class__, self.data, self.args,
seif.kwargs)
def _ _str_ (self):

if self.d ==
factor = self.kwargs.get('simm_factor', 1)
petunnl %N
{filename}\
Number of data lines:
{self.n}
Resultant {datatype}:
{resultant}

Resultant Length:
{self.resultant_length}

Mean Resultant Length :
{self.mean_resultant_length}

Circular Variance:

{self.circular_variance}

Circular Standard Deviation:

{self.circular_standard_deviation}\

“uv_ format(self=self, filename=self.kwargs.get('filename’, ''),
datatype=self.kwargs.get('datatype', 'Azimuth'),
resultant=math.degrees(math.atan2(*self.resultant_vector)))/factor

elif self.d == 3:
return """\

{filename}\

Number of data lines= {self.n}

Expected Distribution:

{self.vollmer_classification}

Eigenvectors:

1: {self.eigenvectors_sphere[0]}

2: {self.eigenvectors_sphere[1]}

3: {self.eigenvectors_sphere[1]}

Shape parameter

K = {self.woodcock_K}

Strength parameter

C = {self.woodcock_C}

Normalized Eigenvalues:

S1: {self.eigenvalues([8]}

S2: {self.eigenvalues[1]}

S3: {self.eigenvalues[2]}

Fabric (triangular diag.):

Point = {self.vollmer_P}

Girdle = {self.vollmer_G}

Random = {self.vollmer_ R}

Cilindricity = {self.vollmer_C}\

e format(self=self, filename=self.kwargs.get('filename', ''))

def plot_pole(self, ax, symbol=None, **plot_kwargs):
"“"plot data as poles to planes"""
if self.d == 3:
strike, dip = RHR(self.data_sphere).T
#strike = (dip_direction - 9@) % 360
if symbol is None:
self.kwargs.get('pole_symbol', 'ko")
if not plot_kwargs:
plot_kwargs = self.kwargs.get('pole_plot_options', {})
ax.pole(strike, dip, symbol, **plot_kwargs)
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def plot_plane(self, ax, symbol=None, **plot_kwargs):
""“plot data as great circles"""
if self.d == 3:
strike, dip = RHR(self.data_sphere).T
#strike = (dip_direction - 98) % 360
if symbol is None:
self.kwargs.get('plane_symbol', 'k-')
if not plot_kwargs:
plot_kwargs = self.kwargs.get('plane_plot_options', {})
ax.plane(strike, dip, symbol, **plot_kwargs)
def plot_line(self, ax, symbol=None, **plot_kwargs):
""“plot data as lines"""
if self.d == 3:
trend, plunge = self.data_sphere.T
#strike = (dip_direction - 98) % 360
if symbol is None:
self.kwargs.get('line_symbol', 'k+')
if not plot_kwargs:
plot_kwargs = self.kwargs.get('line_plot_options’, {})
ax.line(trend, plunge, symbol, **plot_kwargs)
# def plot_circle(self, ax, symbol=None, **plot_kwargs):
#  pass

class PartProcessor(multiprocessing.Process):
def run(self):
connection = self._kwargs.pop(“”connection")
connection.send(self._ target(*self._args, **self._kwargs))
connection.close()

def parallel (function): #there should be faster and simpler ways to do this,
gosh. It works, though.
lltlll\
A parallelization decorator for simple functions that evaluate over a grid,
splitting it's first dimension among the available cores."""
core_count = cpu_count()
if core_count < 2: return function
def parallel_function(grid, *args, **kwargs):
output = []
cores = []
grid_size = grid.shape[9@]
grid_section = int(grid_size/core_count)
for n in range(core_count - 1):
server_p, client_p = Pipe()
core = PartProcessor(grid[n*grid_section:(n+1)*grid section,:],
target = function, *args, **kwargs)
core.start()
cores.append(core)
core = PartProcessor(grid[(core_count - 1)*grid section:-1,:], target
= function, *args, **kwargs)
core.start()
cores.append(core)
for core in cores:
osutput.append(core.recv())
core.close()
s P return np.vstack(output)
R i ¢ return parallel_functior

-'x;_ﬁd&ﬁ;ﬁn%ﬂﬂgl_caunter(counter_factory): #yes, a factory decorator
o i Ll ¥

o

e
Y
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A factory decorator that applies @parallel on the functions returned by
the decorated factory. See parallel for more details."""
def parallel_counter_factory(*args, **kwargs):
if multicore_when_possible:
return parallel(counter_factory(*args, **kwargs))
else:
return counter_factorv(*args, **kwargs)
return parallel_counter_factory

@parallel_counter
def FisherCounter(k):
try:
from grid_functions.fisher_counter import count
def counter(grid, direction_cosines):
return count(grid, direction_cosines, k)
except ImportError:
def counter(grid, direction_cosines):
try:
return np.exp(k*(np.dot(grid, direction_cosines.T) -
1)) .sum(axis=1)
except MemoryError:
result = np.zeros((grid.shape[@2],1))
for input_node, output_node in zip(grid, result):
output_node[:] = np.exp(k*(np.dot(input_ncde,
direction_cosines.T) - 1)).sum()
return counter

@parallel_counter
def FisherCounterAxial(k):
try:
from grid_functions.fisher_counter_axial import count
def counter(grid, direction_cosines):
return count(grid, direction_cosines, k)
except ImportError:
def counter(grid, direction_cosines):
try:
return np.exp(k*(np.abs(np.dot(grid, direction_cosines.T)) -
1)).sum(axis=1)
except MemoryError:
result = np.zeros((grid.shape[8],1))
for input_node, output_node in zip(grid, result):
output_node[:] = np.exp(k*(np.abs(np.dot(input_node,
direction_cosines.T)) - 1)).sum()
return counter

@parallel_counter
def RobinGirdleCounter(k):
25 g\ "/
from grid functions.robin_girdle_counter import count
def counter(grid, direction_cosines):
return count(grid, direction_cosines, k)
except ImportError:
def counter(grid, direction_cosines):
try:
return np.exp(k*(np.dot(grid,
direction_cosines.T)**2)).sum(axis=1)
except MemoryError:
result = np.zeros((grid.shape[@],1))
for input_node, output_node in zip(grid, result):
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output_node[:] = np.exp(k*(np.dot(input_node,
direction_cosines.T)**2)).sum()
return counter

class SphericalGrid(object):
def _ init__ (self, node_spacing=None, *args, **kwargs):
"""“Creates a spherical counting grid"""
self.args, self.kwargs = args, kwargs
if node_spacing is None:
node_spacing = self.kwargs.get('node_spacing', 2.5)
self.grid nodes = regular_grid(node_spacing)
self.grid = dcos(self.grid _nodes)

def count_fisher(self, data, k=None):
e
Performs data counting as in Robin and Jowett (1986). May either receive
as input a DirectionalData object or any numpy array-like. Will guess an
appropriate
k if not given and not available from the DirectionalData options."""
if isinstance(data, DirectionalData):
k = k or data.kwargs.get('counting k', None)
n = data.n
direction_cosines = data.data
else:
direction_cosines
n = data.shape[@]
if k is None:
if n < 1806: #This is the Recomendation made by Robin & Jowett 86
kK = 2%(n + 1)
else:
k = 100
try: #It is bettter to beg forgiveness that ask for permittion.
self.result = np.exp(k*(np.abs(np.dot(self.grid,
direction_cosines.T)) - 1)).sum(axis=1)
return self.result
except MemoryError:
result = np.zeros((self.grid.shape[8],1))
for input_node, output_node in zip(self.grid, result):
output_node[:] = np.exp(k*(np.abs(np.dot(input_node,
direction_cosines.T)) - 1)).sum()
self.result = result
return result
def count_kamb(self, data, theta=None):
Aoy
Performs data counting as in Robin and Jowett (1986) based on Kamb (1956),
May either receive
as input a DirectionalData object or any numpy array-like. Will guess an
appropriate
counting angle theta if not given and not available from the DirectionalData
options.”""
if isinstance(data, DirectionalData):
theta = theta or data.kwargs.get('counting_theta', None)
n = agata.n
girection_cosines = data.data
else:
direction_cosines
n = data.shape[@]
if theta is None:
theta = (n-1)/(n+1)

data

dats
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else:
theta = math.cos(math.radians(theta))
try:
self.result = (np.abs(np.dot(self.grid, direction_cosines.T)) <
theta).sum(axis=1)
except MemoryError:
result = np.zeros((self.grid.shape[2],1))
for input_node, output_node in zip(self.grid, result):
output_node[:] = (np.abs(np.dot(input_node,
direction_cosines.T)) < theta).sum()
self.result = result
return result
def count(self, data, method=None):
ik
If method isn't given, search data for it. If method is a function, execute
it with the counting grid
and the data object as parameters, or search SphericalGrid for it, in case it
I5F a¥striing .4t
if isinstance(data, DirectionalData):
method = method or data.kwargs.get('counting method', None)
direction_cosines = data.data
else:
direction_cosines = data
if not method is None:
if isinstance(method, basestring):
return self._getattribute__ (method)(direction_cosines)
else:
return method(self.grid, direction_cosines)

ANEXO 2 - conversion.py

#Not tremendously stupid converter for orientation data. As of now,
#hopefully will be able to convert from strike/dip+dipquadrant, whether
#the strike is in azimuth or quadrant notation.

#We can but hope.

#Ver €.5.90

import re

from collections import defaultdict

attitude_parser = re.compile("([NSEW]{@,2})(\d*)([NSEW]{0©,2}) [ NSEWO-
91(\d+) ([NSEW1{@,2})", re.IGNORECASE)

azimuth_parser = re.compile(”([NSEW]{@,2})(\d*)([NSEW]{8,2})", re.IGNORECASE)
dip_parser = re.compile("(\d+)([NSEW]{@,2})", re.IGNORECASE)

def parse_quadrant(leading, number, trailing):
base, multiplier = quadrants[(leading, trailing)]
return base + number*multiplier

def parse_strike_quadrant(strike, dip_quadrant):
return strike + dip_quadrants[((strike%188)//99,
trends[dip_quadrant//90]) ]

p = re.compile('(N?)(\d*)([EW ]?).*", re.IGNORECASE)
class Attitude(object):

35



u“w"Class to transcode attitude data"""
#Dispatcher truth table. There oughta be an eleganter way to do this,
though.
strike_coding = {(True, True, True): ‘'quadrant’,
(True, True, False): 'azimuth',
. (True, False, True): ‘cardinal‘,
= (True, False, False): 'cardinal’,
I (False, True, True): ‘dip‘,
Ik (False, True, False): ‘'azimuth’,
ﬂé;_u (False, False, False): ‘error’,
r (False, False, True): ‘error'}

#Constants for trike processing for quadrants. Maybe should reposition
this.
strike_leading = {'N': @, 'S': 188}
strike_trailing = {'E': 1, 'W': -1}
strike_ leading multiplier = {'N': 1, 'S': -1}
#quads = {"NE":-98@,
# FSE 90,
# "SW":90,
# "NW":-98}
_ #Constants for conversion based on dip, with a default value
L1 quadrants = defaultdict(lambda: 99)
. quadrants.update(quads = {"NE":-9@, #ALWAYS REMEMBER: UPDATE RETURNS
NOTHING
“SE":90,
"SW":90,
IINNII : _ga})

< #are regex matches fast? They seem to be...
H 5; strike_pattern = re.compile('([NS]?)(\d*)([EW ]?).*', re.IGNORECASE)
e #Regex parser for strike, separating the constituent Letters and numbers
;4 : dip_pattern = re.compile(' (\d*)([NESW]*).*', re.IGNORECASE) #Regex parser
' f ‘fbr dip, separating the dip from the dip direction quadrant, if present

;L

def process_data(self, attitude, dd=True):
#print strike, dip
e self.data = []
3 dd = (dd and 92.0) or 9.8
L for strike, dip in attitude:
self.leading_letter, self.number, self.tailing letter =
ﬂa&snntk _pattern.match(strike).groups()
~ #coding = Attitude.strike_coding[(bool(self.leading_Letter),
,a@@lbar , bool(self.tailing_Letter))]
g i!nspatch the strike and dip combination to the correct parsing

d&ﬁéﬂirggtion, dip = self.process_strikedip(strike, dip)
ection = (dip_direction - dd) % 360
pend((dip_direction, dip))

36



Lier[self.leading_Letter.upper()]*int(self.number)) % 366 + 90) % 360,
int(dip)

return ((Attitude.strike_leading[self.leading_letter.upper()] +
Attitude.strike_trailing[self.trailing_letter.upper()]*Attitude.strike_ leadi
ng_multiplier[self.leading_letter.upper()]*int(self.number)) % 368 +
Attitude.quadrants[dip_direction_quadrant.upper()]) % 36€, int(dip)

#pass

def do_azimuth(self, strike, dip):

dip, dip_direction_quadrant =
Attitude.dip_pattern.match(dip).groups()

if not dip:

return ‘“err’, ‘err'

return (int(self.number) +
Attitude.quadrants[dip_direction_quadrant]) % 366, int(dip)

#pass

def do_cardinal(self, strike, dip):
dip, dip_direction_quadrant =
Attitude.dip_pattern.match(dip).groups()
return (Attitude.strike_leading[self.leading_letter.upper()] -
Attitude.strike_trailing[dip_direction_quadrant.upper()]*98) % 360.8, dip
#pass

def do_dip(self, dip, strike):
#had to do somewhat of a hack... Better way, anyone?
if reduce(lambda x, y: bool(x and y),
Attitude.strike_pattern.match(strike).groups()): #So as to prevent an
infinite recursion, there might be a better way to do this.
return self.process_strikedip(strike, dip)
else:
return ‘err', ‘err'

def do_error(self, strike, dip):
return ‘err', 'err'

def process_strikedip(self, strike, dip):

self.leading_letter, self.number, self.trailing letter =
Attitude.strike_pattern.match(strike).groups()

coding = Attitude.strike_coding[(bool(self.leading_letter),
bool(self.number), bool(self.tailing letter))]

#Dispatch the strike and dip combination to the correct parsing
function.

#1f _ debug : print strike.upper(), dip.upper()

return getattr(self, “"do_%s" % coding)(strike.upper(), dip.upper())

ANEXO 3 - grid_functions/count_zero.f

subroutine count(grid, points, cosin, ngrid, npoints, dims)
integer ngrid, npoints, dims
real*8 grid(@:ngrid-1,8:dims-1), points(@:npoints-1,08:dims-1)
real*8 cosin(@:ngrid-1,0:npoints-1)

Cf2py intent(out) cosin

Cf2py intent(in) grid

Cf2py intent(in) points

Cf2py depend(ngrid,npoints,dims) cosin

integer 1i,j
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do i = 8, ngrid-1
do j = @, npoints-1
cosin(i,j) = dot_product(grid(i,:), points(j,:))
enddo

enddo

return

end

ANEXO 4 - grid_functions/fisher_counter.f

Cf2py
Cfapy
Cf2py
Cf2py

Cf2py

subroutine count(total,grid,points,kappa,ngrid,npoints,dims)
integer ngrid, npoints, dims
real*8 grid(@:ngrid-1,0:dims-1), points(@:npoints-1,0:dims-1)
real*8 total(®:ngrid-1)
real¥8 z, kappa
intent(in) grid
intent(in) points
intent(in) kappa
intent (out) total
depend(ngrid) total
integer i,j
total=@
do 1 = @8, ngrid-1
2 = 0.0
do j = ©, npoints-1
z = z + exp(kappa*(dot_product(grid(i,:),

peints(j,:))-1))
enddo
total{i) = z
enddo
return

end

ANEXO 5 - grid_functions/fisher_counter_axis.f

Cf2py
Cf2py
Cf2py
Cf2py

i
Cf2p)

subroutine count(total,grid,points,kappa,ngrid,npoints,dims)
integer ngrid, npoints, dims
real*8 grid(®:ngrid-1,0:dims-1), points(®:npoints-1,8:dims-1)
real*8 total(®:ngrid-1)
real*8 z, kappa
intent(in) grid
intent(in) points
intent(in) kappa
intent{out) tot
depend(ngrid) t
integer i,j
total=0@
do i = @, ngrid-1
zZ = 9.0
do j = @, npoints-1
z = z + exp(kappa*(abs(dot_product(grid(i,:),

+ points(j,:)))-1))

enddec
total(i) = z
endao
return
end
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ANEXO 6 - grid_functions/robin_girdle_counter.f

subroutine count(total,grid,points,kappa,ngrid,npoints,dims)
integer ngrid, npoints, dims
real*8 grid(@:ngrid-1,0:dims-1), points(@:npoints-1,8:dims-1)
real*8 total(®:ngrid-1)
real*8 z, kappa

“f2py intent(in) grid

Cf2py intent(in) points

Cf2py intent(in) Rrappa

Cf2py intent(out) total

Cf2py depend(ngrid) totai
integer 1,3
total=0
do 1 = @, ngrid-1

Z-=9.0

do j = @, npoints-1
z = z + exp(kappa*(dot_product(grid(i,:),

+ points(j,:))**2))
enddo
total(i) = 2
enddo
return
end

ANEXO 7 - familia_a.txt

3153 50.54
316.22 51.18
31619 50.32
317.39 50.29
318.4 oll. 76
314.69 51.4
31532 53.12
318.6 53.89
314.65 56.51
312.15 52.64
315.3 50.11
316.26 52.47
300.32 54.25
309.17 59.72
313.92 S7te 35
306.87 64.0
288.29 52.85

ANEXO 8 - familia_b.txt

157.96 37.85
140.65 32.0
148.34 44.03
145.21 43.01
140.97 54.41
167 .47 49.56
168.74 26.67
135.47 38.91
130.83 58.96
152.4 61.26
132:..03 58.37

ANEXO 9 - tocher.txt
#dip_dir dir



147.704
113.663
126.587
185.946
182 .887
117.096
106.355
088.821
118.418
180.374
002.590
186.324
073.251
073.075
184.012
054.920
149.582
159.197
154.722
195.160
165.847
200.319
1910572
115.686
119.646
107.687
197.313
018.910
186.295
170.073
193.162
017.958
050.066
051.529
183.888
022.684
022.847
035.434
152.535
050.636
019.931
041.512
061.994
165.805
096.176
168.413
062.166
035.197
113.356
057.701
207.980
164.107
026.724
174.334
177.443
048.417
047.913
038.494
098.498
1732921
106.525
242 .519
171.796
184.788
202.191
013.365
032.958
147.061
143.730
010.308

64.813
50.462
44,613
72.617
72.158
53.585
50.980
79.496
65.046
TR
61.473
76.550
65.166
DD e 372
72.959
86.960
65.623
e 3201
64.041
88.091
71.867
89.681
88.257
93725
53.953
47 .648
81.262
81.262
77.261
63.964
85.419
86.119
795353
55.798
89.809
88.927
67.354
72.350
50.912
69.432
81.029
o017
67.319
59.771
57 .875
63.495
34.297
78.540
27 .666
55725
86.867
63.076
86.259
62.995
84.191
62.431
65.683
73.840
54.470
66.100
51.247
71.620
57.536
81.977
86.461
87.228
74.399
65.965
53.312
70.091
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145

158.

265

062

081.
182.
.438
209.
195.
050.
085.
203.
186.
152,
114.
1kily/
1505
046.
190.
184.
166.
079.
080.
026.
227 .
Q77
033.
093.
029.
065.
050.
039.
045.
170.
023\
233%
136
165.
187.
046.
1957,
034.
145.
023.
178.

172

042

.370

877

.256
043.
098.
097.
071.
056.
178.
068.
193.
218.
073.
050.
164.
010.
114.
173.
048.
054.
028.
179/
206.
189.
.805

428
266
822
013
093
973
170
314
444
681
558
928
509
927
027
600
556
714
097
759
796

532
726

246
288
907
990
828
366
194
351
694
686
208
187
025
945
147
213
953
387
225
882
408
687
182
685
644
481
814
895
271
735
968
254
060
918
020
704
234
647

.615
235/
034.
074.

232
457
546

.206
.612
.543
.384
=915
5252
.479
.210
=155
S5
.030
.082
.974
.086
.062
.496
. 349
-8
027
=2
=329
.346
-959
SYA
.281
S22
.641
.130
.435
.264
=201
.503
.360
=135
.690
.094
-905
.504
.328
.427
.412
.383
.256
.694
.030
=399
. 545
.621
-3
.825
.147
«673
=13
=365
379
=799
.470
.706
.078
.624
.051
.476
=77k
T
.074
LD
-935
.604
«617
.892
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181.248
180.138
277.718
029.092
171.900
349.540
037.460
081.254
058.418
061.123
069.092
117.138
043.721
111.762
149.894
076.044
061.195
358.275
138.966
093.954
130.246
280.296
073.719
016.698
191.761
193.082
015.233
36.658 7
082.952
029.841
037.979
048.625
180.669
035.159
241.215
185.154
170.722
126.284
063.119
051.368
053.725
022.326
195.305
053.241
232.124
173.320
169.298
164.828
184.352
050.775
072.223
171.455
249.528
034.971
177.362
092.586
180.257
090.249
134.942
110.946

ANEXO 10 - frat.dat

162 74sw
152 78ne
150 84ne
150 88ne
147 78ne
147 82ne

89.241
76.790
62.909
86.475
71.472
86.893
82.650
87.107
68.879
60.037
41.819
54.189
66.989
58.043
57.619
54.411
85.126
81.410
8.899

49.118
34.754
54.802
53.493
87.604
81.048
72.053
85.012
0.868

52.051
49.790
81.407
60.323
DOHCR25
30.706
43.754
70.962
72.476
61.304
80.054
63.618
72.659
86.315
86.282
36.802
41.108
74.837
63.663
61.953
56.685
64 .940
50.303
65.730
40.938
72.316
78.392
13.522
21.653
43.486
49.096
51.057
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146
146
145
145
145
144
143
143
140
139
138
136
135
134
126
092
100
112
120
117
120
117
132
140
105y7/
n72e
n70e
n72e
n74e
n80e
n82e
n8le
n85e
n85e
n85e
n86e
n86e
n87e
n87e
n87e
n88e
n33e
n90e
n90e
98 8
97 8
96 8
92 9
110
102
102
n72e
n29e
n28e
n27e
n30e
n32e
n32e
n32e
n33e
n34e
n34e
n3Se
n35e
n3Se
n3Se
n35e
n38e
n38e
n34e

80ne
86ne
88ne
82ne
86ne
86ne
80ne
90ne
82ne
88ne
70ne
22ne
86ne
80ne
36ne
21ne
42ne
52ne
79ne
72ne
79ne
72ne
74ne
54ne
76ne
62nw
68se
67se
82se
90se
78se
82se
54se
80se
86se
82se
88se
78se
21se
70se
90se
82se
78se
72se
osw
4sw
25w
Osw
62sw
34sw
84sw
73nw
76nw
84nw
68nw
80nw
78nw
88nw
84nw
82nw
76nw
80nw
83nw
80nw
82nw
82nw
88nw
76nw
82nw
84nw
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n39%e
n40e
n4dle
n44e
n73e
n80e
n82e
n82e
n78e
n83e
n84e
n84e
n84e
n84e
n85e
n84e
n86e
n86e
n86e
n76e
n86e
n76e
n86e
n87e
n87e
n88e
n88e
n90e
n78e
n20e
n34e
n54e
n4 3w
n44w
n60e
nl8e
nS3w
n43e
n60w
n22e
n30w
n40e
n30e
nlOe
nl2w

88nw
70nw
78nw
84nw
86nw
86nw
80nw
88nw
86nw
88nw
70nw
70nw
78nw
62nw
83nw
88nw
70nw
70nw
80nw
84nw
88nw
84nw
88nw
78nw
84nw
88nw
86nw
86ne
60nw
12se
09%se
10se
0OSsw
06sw
O8se
22se
16ne
15nw
10ne
O8se
16sw
14nw
12nw
10nw
12ne








